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Abstract 

Figures are frequently used in biomedical articles to 

support research findings; however, they are often 

difficult to comprehend based on their legends alone 

and information from the full-text articles is required 

to fully understand them. Previously, we found that 

the information associated with a single figure is 

distributed throughout the full-text article the figure 

appears in. Here, we develop and evaluate a figure 

summarization system – FigSum, which aggregates 

this scattered information to improve figure 

comprehension. For each figure in an article, 

FigSum generates a structured text summary 

comprising one sentence from each of the four 

rhetorical categories – Introduction, Methods, 

Results and Discussion (IMRaD). The IMRaD 

category of sentences is predicted by an automated 

machine learning classifier. Our evaluation shows 

that FigSum captures 53% of the sentences in the 

gold standard summaries annotated by biomedical 

scientists and achieves an average ROUGE-1 score 

of 0.70, which is higher than a baseline system. 

1. Introduction 

Biomedical journal articles frequently incorporate 

figures as evidence of discovery (1). Figures are 

frequently used by scientists to validate research 

findings and to formulate novel research hypotheses. 

Therefore, figures serve as important evidence for 

scientific communication and peer review. Despite 

the importance of figures, their potential has not been 

completely recognized. Recently, however, there has 

been growing interest in the extraction and use of 

information available in biomedical figures (2).  

Although associated texts are necessary for 

understanding the content of a figure (3), our study 

has shown that this content is disseminated 

throughout the article (4).  We speculate that a text 

summary aggregating this scattered content may help 

a reader comprehend the figure’s meaning. Hence, 

our goal in this study is to find a way to automatically 

extract the sentences from a full-text article that best 

describes a figure in the text and use these sentences 

to generate a short summary of the figure. Our task 

can be viewed as a topic-specific or targeted 

summarization task (2). 
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2. Related Work in Biomedical Text 

Summarization 

Summarization tasks can be divided into two 

approaches - extractive and abstractive. In an 

extractive approach, the task is to generate a summary 

by selecting the most informative and relevant 

sentences from the article. On the other hand, in an 

abstractive approach, the task is to understand the 

concepts of the article and then generate a summary 

by generating text based on these concepts.  

Both approaches have been used to summarize 

biomedical articles. Ling et al. (5) generated a 

structured summary for genes by extracting sentences 

from the literature. Their approach first retrieved 

articles relevant to the queried gene and then used a 

probabilistic language modeling approach to extract 

relevant sentences. This approach outperformed 

general purpose summarization approaches. 

In their summarization system, Reeve et al. (6) used 

the Unified Medical Language System (UMLS) to 

link semantically-related concepts within biomedical 

text. These concept chains were used to identify 

candidate sentences for extraction. A summary was 

produced by using those sentences extracted with the 

strongest chains. The system was evaluated by 

comparing the extracted summaries with the abstracts 

from the articles. The system’s precision and recall 

were 0.90 and 0.92, respectively.  

Similarly, Fiszman et al. (7) developed an abstractive 

approach that relies on identifying the semantic 

categories of terms in articles using SemRep (8) and 

the relationships between these categories. 

Interestingly, instead of producing a textual summary, 

this approach displays summaries in graphical form, 

with nodes being the terms and edges being the 

relationships between those nodes. 

3. Algorithm 

Our goal is to provide a text summary describing the 

content of figures in biomedical articles. For this, we 

decided to select four sentences for each summary: 

one sentence providing a background for the figure, 

one sentence describing the methods used to obtain 

the figure, one sentence describing the outcome and 
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one sentence showing the significance of the figure. 

This is based on our user survey study (unpublished), 

which finds that biologists consider a summary 

comprising one sentence per category to be adequate 

for comprehending figure content.  

For each article, we first classified all full-text 

sentences into Introduction, Methods, Results and 

Discussion (IMRaD) categories using the classifier 

described in (9). Briefly, a multinomial Naïve Bayes 

classifier was trained on manually annotated 

sentences to predict IMRaD categories. We designed 

an algorithm, FigSum, that selects sentences that are 

similar to the legend of the figure being summarized 

and are also related to the central theme of the article, 

as we believe that such sentences can convey the 

content of a figure. Hence, for each sentence, we 

calculated a CentroidScore, which indicates the 

closeness of the sentence to the central theme of the 

article, and a LegendScore, which indicates the 

closeness of the sentence to the legend of the figure 

being summarized. CentroidScore and LegendScore 

were then combined to obtain a SummaryScore. 

Summaries were generated by selecting the sentences 

with the highest SummaryScore. Calculation of the 

CentroidScore and LegendScore is described in the 

following subsections, and the algorithm's schematic 

is shown in Figure 1. 

 

Figure 1.  Schematic representation of our 

summarization algorithm, FigSum. 

3.1 Calculation of CentroidScore 

For each sentence in the article, we calculated a 

CentroidScore to identify sentences that were central 

to the theme of the article. This score was based on 

the idea described in (10). We downloaded Pubmed 

Central’s open access subset, which contained 

120,000 biomedical articles when it was downloaded. 

We first calculated the global IDF (Inverse Document 

Frequency) of every word appearing in the abstract of 

these 120,000 articles. IDF was calculated using the 

following formula –  

    IDFword = log10(Total no. of documents / no. of documents in 

which the word appears) 
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All abstracts were normalized by lowercasing all 

words, and removing stop words (e.g., ‘the’, ‘and’, 

‘for’), punctuation and numbers. All words were 

stemmed using the Porter stemmer (11). We noticed 

that words appearing with a frequency of less than 

five were mostly artifacts or misspelled words 

(example ‘australiaa’ and ‘resultsshow’); hence we 

ignored words with a frequency less than five.  

For each article, we calculated the frequency of each 

word (term frequency) and multiplied it with the 

global IDF value of that word to obtain the TF*IDF 

(Term Frequency * Inverse Document Frequency) 

score. Words were sorted by this score to obtain the 

top 20 words believed to be central to the article. The 

TF*IDF values of these 20 words were divided by the 

number of sentences in the article to obtain a unique 

centroid for every article.  

We then calculated the CentroidScore for each 

sentence as a measure of its centrality to the article. 

For this, word similarity between the normalized 

sentence and the centroid of the article was calculated 

and stored as the CentroidScore of the sentence.  

3.2 Calculation of LegendScore 

LegendScore was calculated as the similarity between 

the legend of the figure being summarized and the 

sentence. Paragraphs from the full text that directly 

referred to the figure were appended to the legend of 

that figure. Both the appended legend and sentence 

were normalized by lowercasing all words and 

removing stop words, punctuation and numbers. An 

ISF (Inverse Sentence Frequency) value was 

calculated for every word in the article using the 

following formula - 

    ISFword = log10(Total number of sentences in article / Number of 

sentences in which the word appears) 

The frequency of every word in a sentence and figure 

legend, TF, was multiplied with that word’s ISF to 

get a TF*ISF value vector for every sentence and 

figure legend. The LegendScore for every sentence 

was calculated as the cosine similarity of the TF*ISF 

vector of that sentence and the figure legend. 

3.3 Automatic Summary Generation 

The SummaryScore of every sentence was calculated 

using the following formula -  

    SummaryScore = (wc * CentroidScore) + (wl * LegendScore) 

where wc and wl are the weights for CentroidScore 

and LegendScore, respectively. We tried various 

combinations of wc and wl such that they add up to 1 

and found that the best performance was obtained 
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with wc set at 0.1 and wl set at 0.9. Based on the 

SummaryScore and the classifier tag of the sentences, 

the best Introduction sentence, Methods sentence, 

Results sentence and Discussion sentence were 

selected to form the figure’s summary. We refer to 

this summary as AutomaticSummary. A sample 

summary is shown in Figure 2. 

 

Figure 2. A summary generated by our algorithm for 

Figure 1 in an article (12). The four summary 

sentences are the sentences tagged as Introduction, 

Methods, Results and Discussion, in that order. 

3.4 A Baseline System 

A baseline system, BaseSum, was developed based 

on the position of the sentences relative to the first 

sentence referring to the figure (13). All sentences in 

each article were arranged as a list in the order that 

they appeared in the article. Based on the predicted 

IMRaD category of the first sentence referring to the 

figure, BaseSum selected the remaining three 

sentences by moving up or down the sentence list. 

Since IMRaD categories are linear, i.e. Introduction, 
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Methods, Results and Discussion appear in that order, 

the direction in which the system scans to select 

sentences depends on the predicted category of the 

first referring sentence. For example, if the first 

referring sentence was predicted as Results, then the 

system would move up the sentence list to find the 

first predicted Introduction and Methods sentences 

and move down the sentence list to find the first 

predicted Discussion sentence. Four sentences were 

thus selected to form the BaselineSummary. 

4. Generation of Evaluation Data 

We asked four annotators to generate a summary for 

each figure in an article. Each annotator had an 

advanced degree (MS and above) in biomedical 

science, and they were asked to select three to four 

sentences best describing the background of the 

figure, the method used to obtain the figure, the 

outcome based on that figure, and the conclusion 

based on the figure. Annotators were free to choose 

the same sentence for two different categories. Hence, 

for every figure, we obtained a 12- to 16-sentence 

long summary, which we call the AnnotatorSummary.  

In all, seven articles, comprising a total of 44 figures, 

were annotated. Six of these articles were randomly 

selected from the GENIA corpus (14) and were 

annotated by three annotators (one person annotated 

three articles, one annotated two articles, and one 

annotated a single article; there was no article 

overlap), and one article was randomly selected from  

PubMed Central's Open Access subset and was 

annotated by the author of that article. The average 

number of unique sentences in AnnotatorSummary 

for each figure and the total number of figures and 

sentences in the full text of each article appear in 

Table 1. We used these figure annotations to evaluate 

FigSum. 

5. Evaluation based on Precision 

Here, we report the precision of the summary 

generated by FigSum (AutomaticSummary) and 

BaseSum (BaselineSummary) against the annotator 

generated summary (AnnotatorSummary). For each 

sentence in AutomaticSummary and 

BaselineSummary, we checked to see if the sentence 

was a part of AnnotatorSummary as well. If it was, 

we denoted the sentence as a True Positive (TP), and 

if not, we denoted the sentence as a False Positive 

(FP). Based on the number of TP sentences and FP 

sentences, the precision was calculated by using the 

formula: Precision = TP / (TP + FP). The precision of 

AutomaticSummary and BaselineSummary with 

respect to these seven articles is shown in Table 2. 
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6. Evaluation based on the ROUGE Score 

In addition to precision, we used the ROUGE score to 

obtain evaluation metrics, as ROUGE scores are 

widely used for evaluating text summarization tasks 

(15). ROUGE score evaluates test summaries by 

comparing it with a human-generated gold standard 

summary based on the n-gram overlap between the 

test summary and the gold standard. An n-gram is a 

subsequence of n words in a text. ROUGE scores 

range from 0 to 1, and a higher score indicates that 

the test summary is closer to the gold standard 

summary.  

Article Average no. of unique 

sentences per figure in 

AnnotatorSummary 

No. of 

sentences 

in article 

No. of 

figures in 

article 

1 10.2 160 5 

2 10.8 140 5 

3 11.78 281 9 

4 10.5 172 4 

5 6.33 137 9 

6 8.4 87 5 

7 8.0 173 7 

Table 1. The number of unique annotated sentences 

per figure for each article, the number of sentences 

per article, and the number of figures per article.  

 AutomaticSummary BaselineSummary 

Ar  TP  FP Prec.  TP  FP Prec. 

 1  11  9  0.55  8  12  0.40 

 2  11  9  0.55  11  9  0.55 

 3  16  20  0.44  6  30  0.17 

 4  8  8  0.50  7  9  0.44 

 5  23  13  0.64  15  21  0.42 

 6  12  8  0.60  11  9  0.55 

 7  13  15  0.46  13  15  0.46 

Oa  94  82  0.53  71 105  0.40 

Table 2. Precision of the Automatic Summary and 

the Random Summary. Ar: Article, Oa: Overall, TP: 

True Positives, FP: False Positives, Prec.: Precision 

We calculated the ROUGE scores using the 

parameters established by the Document 

Understanding Conference 2007 (16). For every 

sentence in AutomaticSummary and 

BaselineSummary, we calculated ROUGE scores 
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against every annotated sentence and retained the best 

scores. The average of the best ROUGE scores over 

every figure and sentence in the three summaries were 

then calculated. We report the ROUGE-1, ROUGE-2 

and ROUGE-SU4 scores in Table 3. ROUGE-1 

compares summaries based on the co-occurrence of 

unigrams (single words), ROUGE-2 compares 

summaries based on the co-occurrence of bigrams 

(two consecutive words), and ROUGE-SU4 compares 

summaries based on the co-occurrence of skip 

bigrams with a maximum gap length of four (15). 

 AutomaticSummary BaselineSummary 

Article  R-1  R-2 R-SU4  R-1  R-2 R-SU4 

1 0.75 0.62 0.63 0.62 0.46 0.48 

2 0.73 0.64 0.63 0.69 0.61 0.60 

3 0.59 0.48 0.49 0.45 0.23 0.26 

4 0.71 0.61 0.60 0.59 0.48 0.48 

5 0.76 0.68 0.69 0.58 0.46 0.47 

6 0.71 0.65 0.64 0.64 0.57 0.58 

7 0.65 0.55 0.54 0.65 0.52 0.53 

 Average 0.70 0.60 0.60 0.60 0.48 0.49 

 Std Dev 0.06 0.07 0.07 0.08 0.12 0.11 

Table 3. The average ROUGE-1, ROUGE-2 and 

ROUGE-SU4 scores for the AutomaticSummary and 

BaselineSummary. R-1: ROUGE-1, R-2: ROUGE-2, 

R-SU4: ROUGE-SU4, Std Dev: Standard Deviation 

7. Discussion 

Here, we have described our algorithm, FigSum, to 

automatically generate extractive summaries for 

figures in biomedical journal articles. A baseline 

summary was generated by selecting sentences near 

the first sentence that refers to the figure. On 

comparing with expert generated summaries, we 

found that FigSum performs better than the baseline 

system.  

We found that the precision of AutomaticSummary 

fell in a range between 0.44 and 0.64. This could be 

due to variation in the quality of summary generated 

by the annotators. As noted earlier, human-generated 

summaries often display such variation (17; 18). 

Also, article length seemed to have an effect on the 

precision of AutomaticSummary. The longest article 

(Article 3) contained 281 sentences, and it had the 

worst precision score (0.44). On the other hand, the 

shortest article (Article 6) was 87 sentences long and 

had the second best precision score (0.64).  
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We calculated the ROUGE-1, ROUGE-2 and 

ROUGE-SU4 scores according to the guidelines of 

the Document Understanding Conference 2007. 

These scores reflected that FigSum performed better 

than BaseSum. It was interesting to note that for 

Article 2, although both AutomaticSummary and 

BaselineSummary achieved a precision of 0.55, the 

ROUGE scores for the AutomaticSummary were 

better than the ROUGE scores for BaselineSummary. 

This indicates that sentences chosen by FigSum are 

closer to the human-generated gold standard summary 

than the sentences chosen by BaseSum. 

We also observed that the best performance was 

obtained when the contribution of the CentroidScore 

in the SummaryScore was only 10%. In fact, when the 

CentroidScore formed 0% of the SummaryScore the 

overall precision remained unaltered but the overall 

ROUGE score declined. The impact of the 

CentroidScore on the selection of summary sentences 

will be studied further in the future. 

There are, however, certain limitations to our study. 

The current results are based on only 44 biomedical 

figures. Although this is a small number of figures, 

the results still indicate that our approach yields 

summaries that are closely related to the information 

deemed important by experts for explaining the 

contents of these figures. Another limitation is that 

FigSum does not take into account the semantics of 

the sentence. Additionally, the performance of 

BaseSum indicates that position of the sentence 

relative to a sentence referring to the figure might be 

useful; however, this feature was not explored in this 

study. To overcome these limitations, we intend to 

expand our study by annotating more articles to 

establish a better a foundation for our conclusions and 

use the above-mentioned features to potentially 

improve the performance of the system. 

Our approach generates summaries by extracting 

sentences from articles. Hence it is not immune to the 

inherent problem of extractive summaries in that 

certain sentences do not make sense when taken out 

of context. In the future, we will explore methods for 

limiting the selection of sentences that are difficult to 

understand out of context. 

The summaries generated by our system are available 

via our biomedical figure search engine – 

http://figuresearch.askhermes.org/.  
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